

KORE

Enhancing Knowledge Injection for Large Multimodal Models via Knowledge-Oriented Augmentations and Constraints

Kailin Jiang ^{1,2} Hongbo Jiang ³ Ning Jiang ⁴ Zhi Gao ^{5,2} Jinhe Bi ⁶ Yuchen Ren ⁷ Bin Li ¹ Yuntao Du ⁸ Lei Liu ¹ Qing Li ² ✓

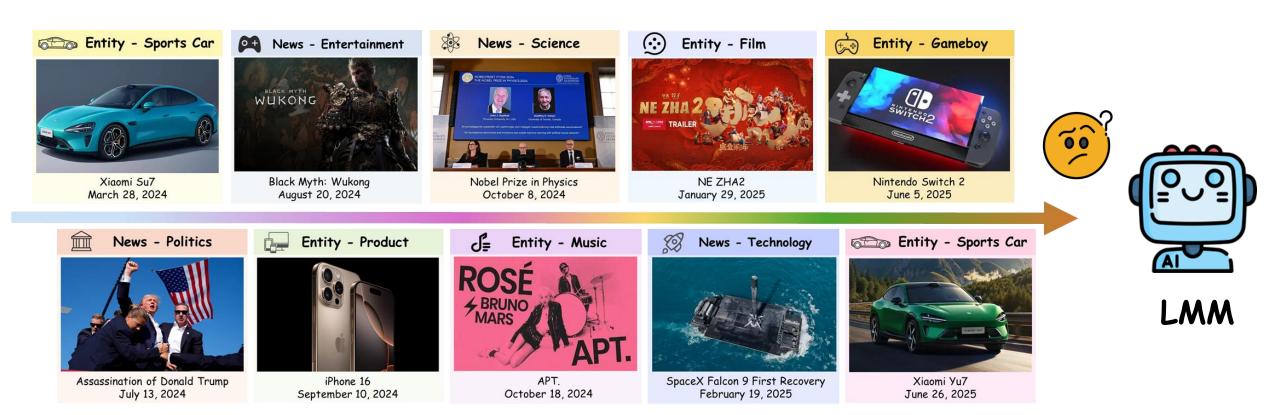
¹University of Science and Technology of China, USTC ²State Key Laboratory of General Artificial Intelligence, BIGAI

³Xiamen University, XMU ⁴Northeast Forestry University, NEFU ⁵Beijing Institute of Technology, BIT

⁶Ludwig Maximilian University of Munich, LMU ⁷The University of Sydney, USYD ⁸Shandong University, SDU

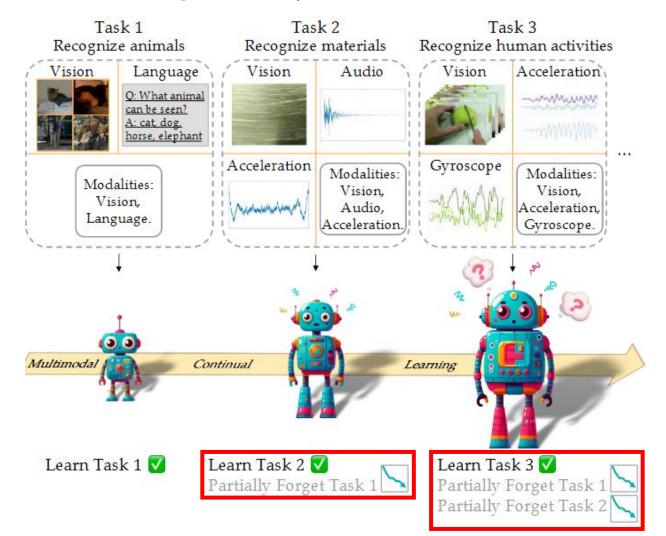
Background: Knowledge Adaptation

Released LMMs can't keep pace with evolving knowledge.

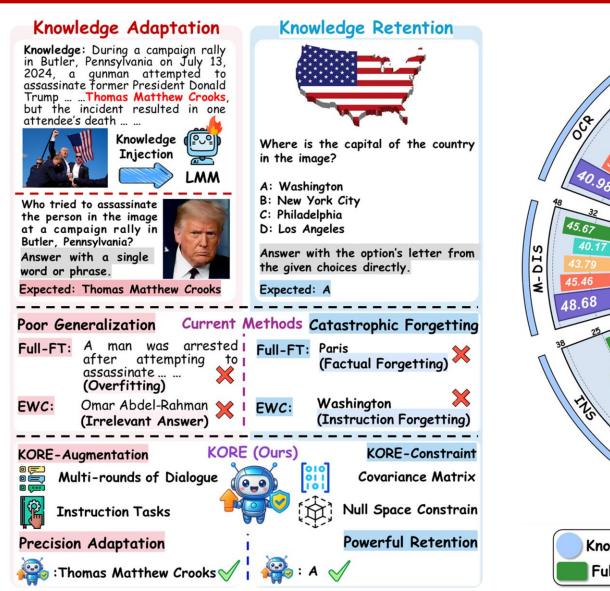


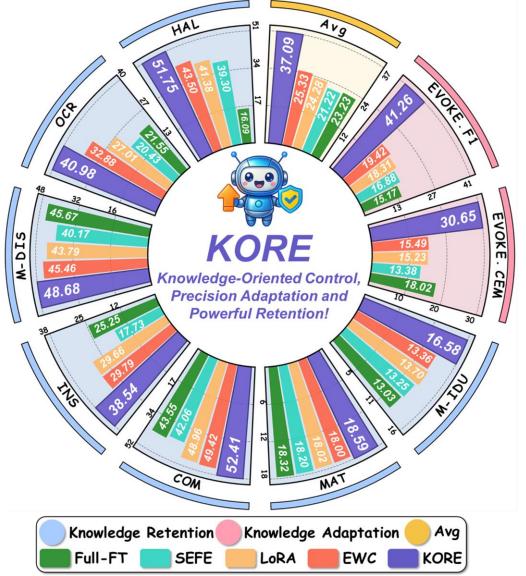
Background: Knowledge Retention

Injecting new knowledge leads to catastrophic forgetting, causing model to forget its previous abilities and knowledge



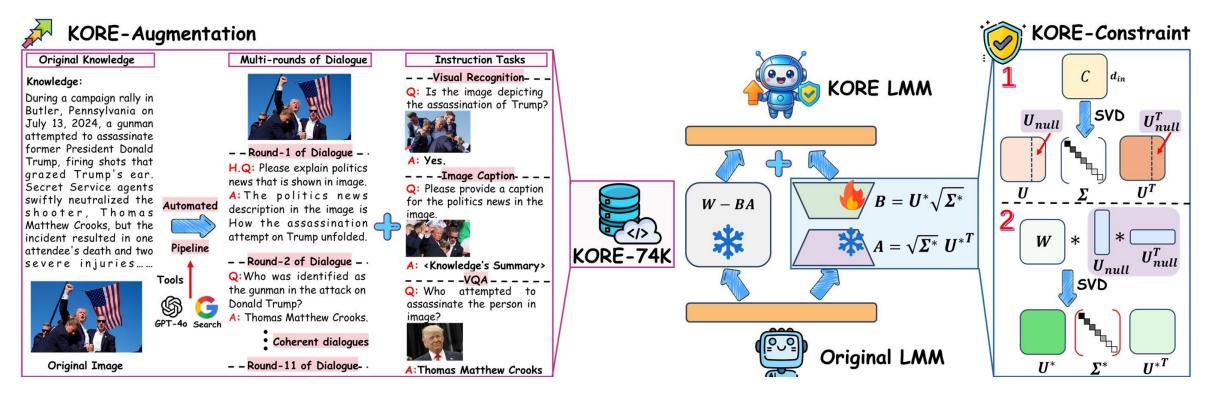
Teaser: Accurate Adaptation and Powerful Retention





KORE: KnOwledge-oRientEd Augmentations and Constraints

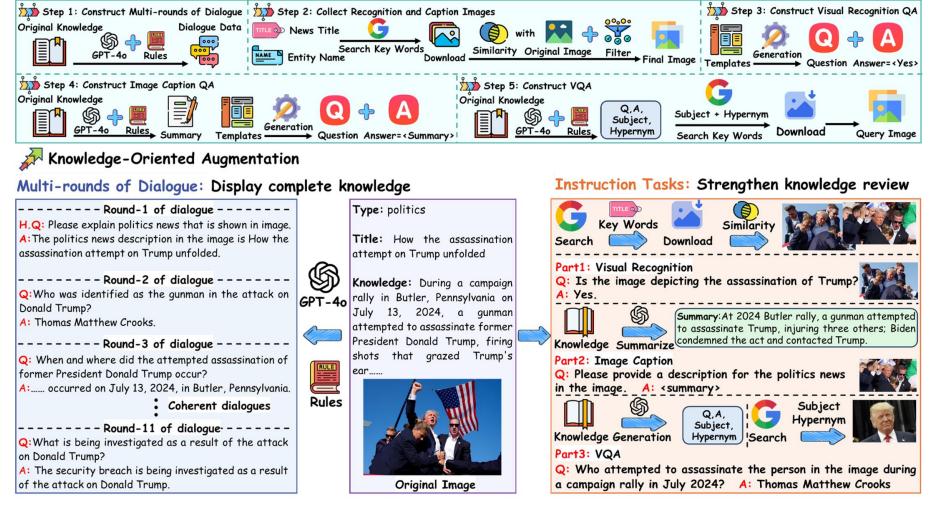
KORE-Augmentation automatically converts each piece of knowledge into profound and structured knowledge.



KORE-Constraint minimizes interference with previous knowledge by initializing and dapter with null space that stores covariance matrix of previous knowledge.

KORE-Augmentation

Automated Pipeline of Knowledge-Oriented Augmentation



Step 1:

Constructing Multi-rounds of Dialogue.

Step 2:

Collecting Recognition and Caption Images.

Step 3:

Constructing Visual Recognition QA.

Step 4:

Constructing Image Caption QA.

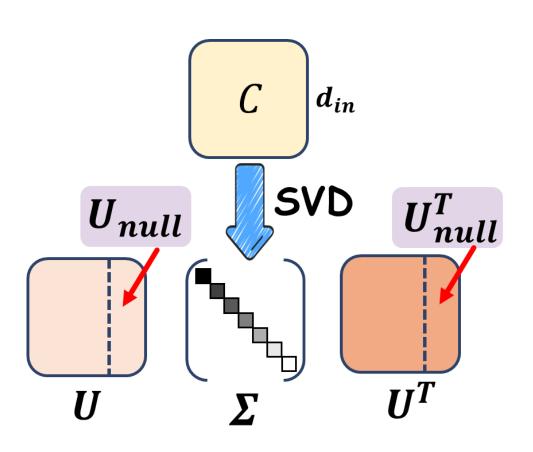
Step 5:

Constructing VQA.

Figure 13: Overview of construction pipeline for KORE-74K. The entire data construction process is automated, with only the question templates being manually crafted.

KORE-Constraint

Capture knowledge into covariance matrix and decompose it



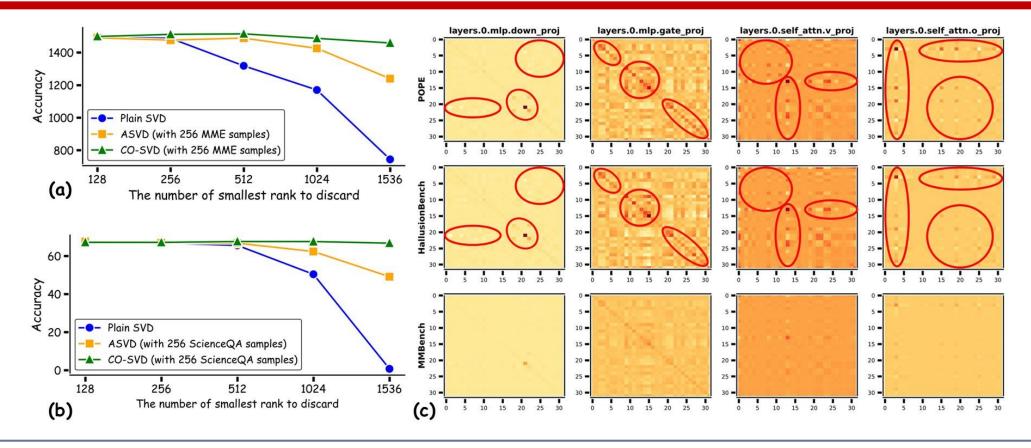
Covariance matrix

$$oldsymbol{C} = oldsymbol{X} oldsymbol{X}^T \in \mathbb{R}^{d_{in} imes d_{in}}$$

Decompose covariance matrix

$$SVD\left(\boldsymbol{X}(\boldsymbol{X})^{T}\right) = \sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{T}$$

KORE-Constraint



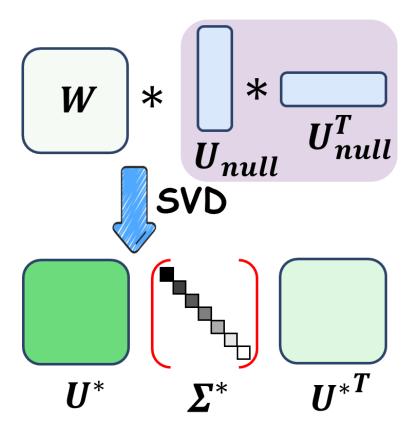
Findings 1: Multimodal knowledge can be effectively captured and stored in covariance matrix.

Findings 2: Distinct tasks exhibit different outlier distributions in the covariance matrix.

KORE-Constraint

Define the fine-tuning direction that minimizes interference with previous

knowledge



Satisfy null space

$$oldsymbol{U}_{ ext{null}}^Toldsymbol{C} = oldsymbol{0}$$

Approximate null space

$$\hat{m{U}} \in \mathbb{R}^{d_{\mathsf{in}} imes r} \quad m{P} = \hat{m{U}} \hat{m{U}}^T$$

Define fine-tuning direction

$$SVD\left(\boldsymbol{W}_{0}\boldsymbol{P}\right) = \left\{\boldsymbol{U}^{*}, \boldsymbol{\Lambda}^{*}, (\boldsymbol{U}^{*})^{T}\right\}$$

$$oldsymbol{B} = oldsymbol{U}^* \sqrt{oldsymbol{\Sigma}^*}, \qquad oldsymbol{A} = \sqrt{oldsymbol{\Sigma}^*} oldsymbol{V}^{*T}$$

Main results

M-4b-3	#Params	Evo	KE	COM ↑ C	OCD *	M-DIS↑	INS↑	M-IDU ↑	MAT ↑	HAL↑	
Method		СЕМ↑	F1↑		OCR↑						Avg ↑
LLaVA-v1.5 (7B)	_	_	_	65.61	45.59	49.22	66.33	26.37	19.33	54.32	_
Full-FT	6,759M	18.02	15.17	43.55	21.55	45.67	25.25	13.03	18.32	16.09	23.23
LoRA	340M	15.23	18.31	48.96	27.01	43.79	29.66	13.70	18.02	41.38	24.28
Replay	340M	11.36	17.98	59.72	37.98	48.64	62.33	19.31	19.17	51.67	28.68
EWC	340M	15.49	19.42	49.42	32.88	45.46	29.79	13.36	18.00	43.50	25.33
LwF	340M	14.58	19.99	53.14	28.77	43.41	36.19	13.68	18.22	44.18	25.61
MoELoRA	340M	6.45	12.20	60.79	38.79	48.27	35.03	<u>17.85</u>	<u> 19.79</u>	49.99	23.98
O-LoRA	340M	6.44	12.08	61.47	40.91	48.07	34.85	17.28	19.87	51.12	24.17
SEFE	340M	13.38	16.88	42.06	20.43	40.17	17.73	13.25	18.20	39.30	22.54
KORE (r=235)	340M	30.65	41.26	52.41	40.98	48.68	38.54	16.58	18.59	51.75	37.09
KORE (r=256)	369M	31.05	41.32	52.48	39.96	48.96	60.02	23.18	18.09	51.50	39.11

Obs 1: KORE enables accurate adaptation for effectively injecting new knowledge.

Obs 2: KORE enables powerful retention for effectively preserving old knowledge.

Obs 3: KORE achieves remarkable holistic performance by harmonizing the dual objectives of knowledge injection.

Knowledge adaptation and retention's Detailed Results

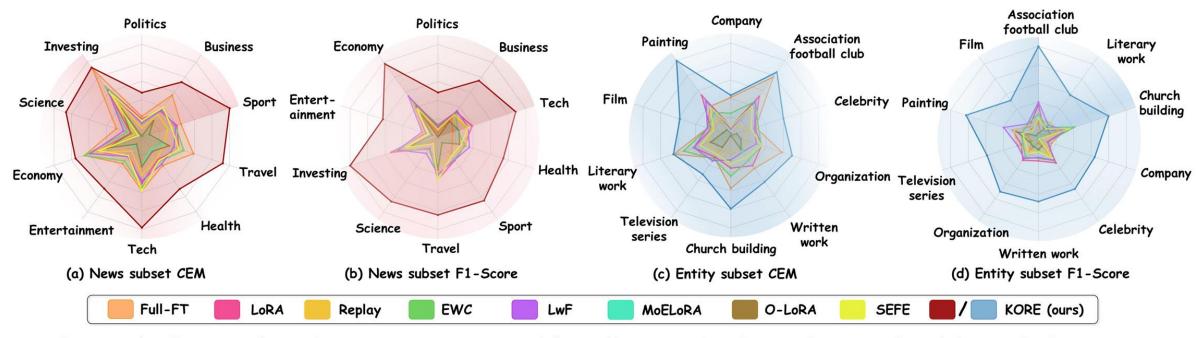


Figure 5: Comparison between KORE and baseline methods on fine-grained knowledge types.

Obs 4: KORE demonstrates superior performance across a wide spectrum of fine-grained knowledge.

Knowledge adaptation and retention's Detailed Results

Table 2: Performance comparison between KORE and baseline methods on fine-grained knowledge retention evaluations with LLaVA-v1.5 (7B). MM^B: MMBench; SEED^{B2P}: SEEDBench2_Plus; Math^T: MathVista; Math^I: MathVision; Hall^B: HallusionBench. The score of MME is normalized.

Method	COM		00	OCR		M-DIS		M-IDU MA		AT HAL		Ava	
	MME ↑	$\mathbf{M}\mathbf{M}^{\mathbf{B}}\uparrow$	SEED ^{B2P} ↑	OCR ^{VQA} ↑	SQA ↑	MMMU↑	MIA ^B ↑	MMDU ↑	Math ^T ↑	Math ^I ↑	POPE ↑	Hall ^B ↑	Avg
LLaVA-v1.5 (7B)	66.63	64.60	38.78	52.41	69.83	28.60	66.33	26.37	25.50	13.16	86.87	21.76	46.74
Full-FT LoRA	34.17 44.06	52.92 53.87	31.44 30.22	11.65 23.80	67.13 66.18	24.20 21.40	25.25 29.66	13.03 13.70	24.70 23.20	11.94 12.83	74.22 73.97	9.27 8.78	31.66 33.47
Replay EWC LwF MoELoRA O-LoRA SEFE	58.96 48.57 50.87 58.26 60.30 36.10	60.48 50.26 55.41 63.32 62.63 48.02	38.34 33.60 32.02 37.42 37.90 22.79	37.73 32.16 25.52 40.17 43.91 18.07	68.77 65.71 66.21 69.04 68.84 65.03	28.50 25.20 20.60 27.50 27.30 15.30	62.33 29.79 36.19 35.03 34.85 17.73	19.31 13.36 13.68 17.85 17.28 13.25	25.20 23.30 24.40 27.80 28.20 26.00	13.13 12.76 12.04 11.78 11.55 10.39	85.44 76.22 79.23 80.70 81.46 72.81	17.90 10.77 9.13 19.29 20.78 5.79	43.00 35.14 35.44 40.51 <u>41.25</u> 29.27
KORE (r=235) KORE (r=256)	49.84 50.06	54.98 54.90	37.73 36.89	44.24 43.03	68.06 68.51	29.30 29.40	38.54 60.02	16.58 23.18	25.10 24.70	12.09 11.48	80.99 80.77	22.51 22.23	40.00 42.10

Obs 5: KORE achieves competitive knowledge retention.

Knowledge adaptation and retention's Detailed Results

Table 3: Performance of knowledge adaptation (K.A) and retention (K.R) under specific knowledge-oriented constraints.

Method	 K.A ↑	K.R ↑	Avg ↑
KORE	35.96	38.22	37.09
KOREMME	34.46	43.16	38.81
KORE _{OCR} VQA	34.85	42.21	38.53
KORE _{Math} T	<u>35.20</u>	42.87	39.03
KORE _{Hall} B	34.96	42.09	38.52

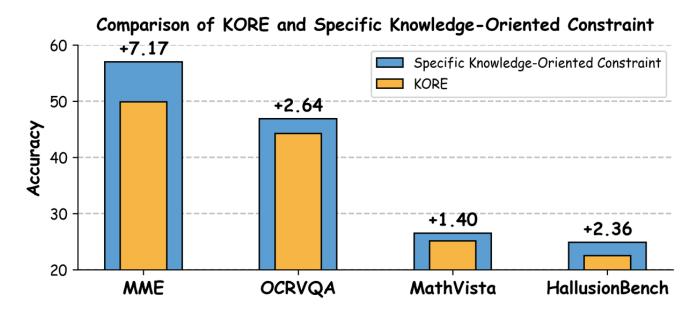


Figure 6: Performance comparison of corresponding tasks under specific knowledge-oriented constraints.

Obs 6: Specific constraints enhance knowledge retention and overall performance.

Various LMM scales and architectures

Table 4: Performance comparison between KORE and baseline methods on knowledge adaptation and retention with various LMMs scales and architectures.

Methods	Evo	EVOKE		OCR↑	M-DIS↑	INS ↑	M-IDU ↑	MAT ↑	HAL ↑	Avg↑	
	CEM↑	F1 ↑	COM ↑		,	'		,	'		
LLaVA-v1.5 (13B)											
Vanilla		_	66.86	51.12	52.70	66.04	33.93	19.64	56.77		
LoRA	16.26	22.83	60.57	32.58	43.72	23.26	17.43	15.82	38.08	25.21	
Replay	12.05	20.21	65.81	47.51	<u>48.42</u>	<u>61.04</u>	<u>24.62</u>	<u>19.55</u>	54.16	<u>30.70</u>	
Kore	32.89	44.47	59.35	<u>45.96</u>	51.39	65.10	26.84	20.31	40.52	41.44	
				Qw.	en2.5-VL (7.	B)					
Vanilla	_	_	81.18	70.32	65.35	78.46	61.25	47.69	66.96		
LoRA	14.56	14.01	52.54	64.54	22.35	21.39	23.25	13.52	41.38	24.21	
Replay	11.73	<u>18.51</u>	78.54	69.17	65.26	70.20	50.72	42.74	67.48	39.28	
Kore	22.91	31.36	<u>56.60</u>	<u>67.74</u>	65.48	70.51	45.02	43.72	<u>58.57</u>	42.68	

Obs 7: KORE shows enhanced superiority on a larger-scale LMM.

Obs 8: KORE's effectiveness is not architecture-specific.

Ablation experiments

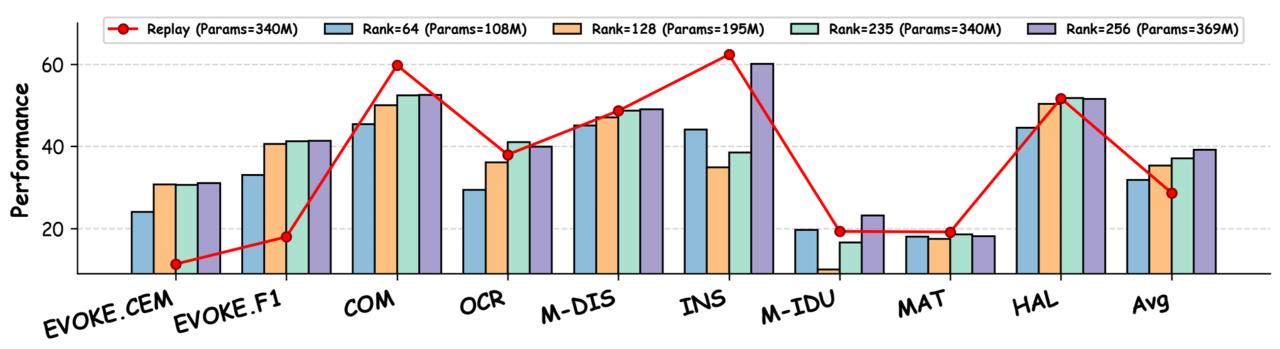


Figure 7: Comparison of different ranks for KORE with LLaVA-v1.5 (7B).

Obs 9: Larger rank enhance KORE's performance.

Ablation experiments

Table 5: Comparison of ablation experiment results of KORE on LLaVA-v1.5 (7B).

Catting	EVOKE		COMA	OCR ↑	M-DIS↑	INIC A	M IDII A	N/I A/TC A	TTAT A	A =
Setting	CEM↑	F1 ↑	COM ↑	OCK	MI-DIS	INS ↑	M-IDU ↑	MAT ↑	HAL ↑	Avg ↑
Kore	30.65	41.26	<u>52.41</u>	40.98	48.68	38.54	16.58	18.59	51.75	37.09
W/o Augmentation	10.83	18.31	59.96	40.42	47.13	32.53	16.00	19.71	49.50	26.23
W/o Constraint	33.93	43.71	46.39	32.38	46.31	32.70	15.38	<u>19.12</u>	46.47	36.46
W/o Frozen Matrix A	31.97	<u>41.72</u>	50.73	39.56	48.37	<u>35.30</u>	<u>16.44</u>	19.07	<u>49.91</u>	36.95

Obs 10: Ablation studies reveals the effectiveness of KORE's design.

Comparison with general augmentation methods

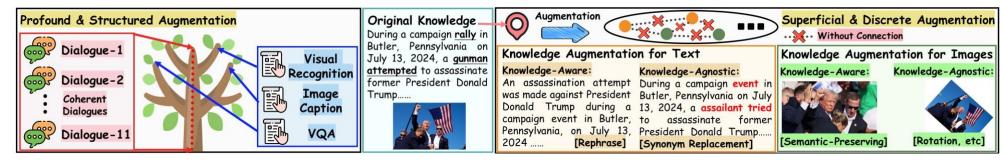


Table 6: Performance comparison of different augmentation methods.

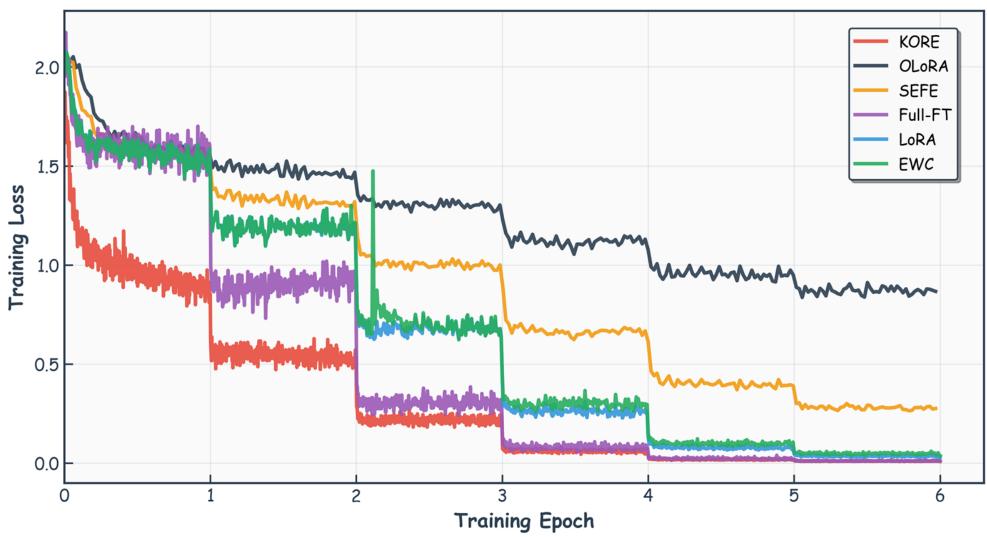
Method	K.A ↑	K.R ↑	Avg ↑
KORE-AUGMENTATION	38.82	35.78	36.46
Augmentati	on for Te.	xt	
Knowledge-Aware	20.29	34.86	27.38
Knowledge-Agnostic	15.60	35.71	25.49
Augmentation	n for Ima	ges	
Knowledge-Aware	18.33	34.02	25.86
Knowledge-Agnostic	18.33	32.09	25.25

Results

Obs 11: KORE-Augmentation is superior to general augmentation methods.

Loss curves

Training Loss Comparison



Case study

Knowledge: The 2024 Nobel Prize in Physics has been awarded to John Hopfield and Geoffrey Hinton for pioneering contributions to machine learning, fostering today's AI technologies. Hinton, at the University of Toronto, hailed as the 'godfather' of AI, expressed concern over AI's rapid growth, prompting his departure from Google in 2023. Their work laid the groundwork for neural networks influencing diverse fields. The award, announced in Sweden, underscores Al's societal impact. Despite his concerns, Hinton sees Al's potential benefits but fears its unchecked advancements. **Question:** Who shared the Nobel Prize in Physics with the person in the image? Answer: John Hopfield User LLaVA-v1.5-7B Full-FT Replay Answer: Alain Aspect Answer: David Wineland Answer: John barrett CEM: 0.0, F1: 0.0 CEM: 0.0, F1: 0.0 CEM: 0.0, F1: 0.5 EWC MoELoRA Answer: Duncan Haldane Answer: Emmanuel Candes Answer: Peter higgs CEM: 0.0, F1: 0.0 CEM: 0.0, F1: 0.0 CEM: 0.0, F1: 0.0 A O-LoRA SEFE KORE Answer: Peter higgs Answer: David Wineland Answer: John Hopfield CEM: 0.0, F1: 0.0 CEM: 0.0, F1: 0.0 CEM: 1.0, F1: 1.0 LLaVA-v1.5-13B LoRA KORE Replay Answer: Alain Aspect Answer: Alain Aspect Answer: John Hopfield CEM: 0.0, F1: 0.0 CEM: 0.0, F1: 0.0 CEM: 1.0, F1: 1.0 Qwen2.5-VL KORE LoRA Replay Answer: Kip Thorne Answer: Kip Thorne Answer: John Hopfield CEM: 0.0, F1: 0.0 CEM: 0.0, F1: 0.0 CEM: 1.0, F1: 1.0

